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1. Introduction

The consistent finite element method for the computation of critical values is theoretically
sound and also provides an assured upper bound on the lowest eigenvalue. But the price of
consistency is the general algebraic eigenvalue Kx ¼ lMx that is computationally more
complicated and costly than the special Kx ¼ lx since it may necessitate the transformations
M�1Kx ¼ lx; or L�1KL�Ty ¼ ly; M ¼ LLT; y ¼ LTx; that destroy the sparsity of the global
stiffness matrix K ; exacting thereby a heavy toll on the linear algebraic computation. An upper
bound on the fundamental eigenvalue l is theoretically interesting but may be of limited practical
value particularly since a lower bound on l is so hard to come by. Mass lumping producing a
diagonal mass matrix M is, therefore, an attractive option for the engineer confronted with large
complex systems. It can be looked upon as replacing the continuous mass distribution by lumps
concentrated at the nodes, and if done correctly [1] preserves the accuracy of the finite element
approximation. Such lumping may lead to an underestimate of the fundamental eigenvalue and a
convergence from below as the mesh is appropriately refined.
If it is so that the consistent finite element formulation leads to an overestimation of l and the

lumped finite element formulation leads to an underestimation of l; then it stands to reason that
an intermediate formulation should exist that is accurately superior to both formulations. It is the
purpose of this note to show, theoretically at first and numerically later on, that a superconvergent
finite element formulation indeed exists for the eigenproblem discretized with low as well as high
order finite elements in one or more dimensions.

2. Two-nodes string element

We start with looking at the simplest most transparent problem, that of the vibrating unit
string, described by the boundary value problem

u00 þ lu ¼ 0; 0oxo1; uð0Þ ¼ uð1Þ ¼ 0 ð1Þ
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in which l ¼ p2 is the lowest eigenvalue, and u ¼ sin px the corresponding eigenfunction. It is also
customary to write l ¼ o2 with o being the fundamental frequency of the system. Eigenproblem
(1) can be expressed variationally in the form

l ¼ min
*u

R 1
0 *u

02
dxR 1

0 *u2 dx
; *uð0Þ ¼ *uð1Þ ¼ 0 ð2Þ

in which trial function *u ¼ 0 is required to be at least continuous in 0pxp1: The essence of finite
elements consists of constructing *u as a piecewise polynomial.
Let the typical finite element extend over x1pxpx1 þ h: The quadratic form definitionsZ x1þh

x1

*u
02
dx ¼ uTe keue;

Z x1þh

x1

*u2 dx ¼ uT
e meue ð3Þ

for the element nodal vector ue produce for a piecewise linear *u the element matrices

ke ¼
1

h

1 �1

�1 1

" #
; me ¼

h

6

2 1

1 2

" #
; me ¼

h

2

1

1

" #
ð4Þ

in which ke is the element stiffness matrix, and in which the first element mass matrix me is the
consistent matrix for which uT

e meue is true for *u ¼ 1 and *u ¼ x; while the second element mass
matrix me in Eq. (4) is the lumped matrix with uTe meue true only for *u ¼ 1:
Let the interval 0pxp1 be divided into n þ 1 sections of size h ¼ 1=ðn þ 1Þ with nodes labeled

0; 1; 2;y; n; n þ 1: Assembly of the linear finite elements over this mesh using the lumped mass
matrix leads to the typical finite difference equation

uj � 2ujþ1 þ ujþ2 þ o2h2ujþ1 ¼ 0; u0 ¼ uuþ1 ¼ 0: ð5Þ

This recursive equation is solved by uj ¼ zj provided that z satisfies the characteristic equation

z2 þ zð�2þ o2h2Þ þ 1 ¼ 0 ð6Þ

having complex conjugate roots under the condition that

o2h2o4: ð7Þ

Then

z ¼ 1� 1
2o

2h27iho
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

4o
2h2

q
ð8Þ

in which i2 ¼ �1: Since jzj ¼ 1 we may write the roots of Eq. (8) as z ¼ cos y7i sin y and have that
uj ¼ c1z

j
1 þ c2z

j
2 with c1 and c2 depending on the boundary conditions. Now

uj ¼ ðc1 þ c2Þ cos jyþ iðc1 � c2Þ sin jy ¼ A cos jyþ B sin jy ð9Þ

and we have that A ¼ 0 since u0 ¼ 0: The other boundary condition uuþ1 ¼ 0 leads to B sinðn þ
1Þy ¼ 0; and for a non-trivial solution we discount B ¼ 0 and require instead that

ðn þ 1Þy ¼ p or y ¼ ph: ð10Þ

From Eq. (8) we have that

cos ph ¼ 1� 1
2
o2h2 ð11Þ
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or

o2 ¼
2

h2
ð1� cos phÞ:

Power series expansion of cos ph results in

l ¼ p2 1� 1
12
p2h27?

� �
; ð12Þ

clearly indicating that l in Eq. (12) is an underestimation of p2 of accuracy Oðh2Þ:
Assembly of the linear finite elements with the consistent mass matrix results in the typical finite

difference equation

uj þ 2ujþ1 þ ujþ2 þ 1
6
o2h2ðuj þ 4ujþ1 þ ujþ2Þ ¼ 0 ð13Þ

with the associated characteristic equation

z2 þ 2
�6þ 2o2h2

6þ o2h2
z þ 1 ¼ 0: ð14Þ

When complex, the roots of Eq. (14) may again be written as z ¼ cos y7i sin y; and here

cos ph ¼
6� 2o2h2

6þ o2h2
ð15Þ

so that

o2 ¼
6

h2
1� cos ph

2þ cos ph
: ð16Þ

Power series expansion reduces Eq. (16) to

o2 ¼ p2 1þ 1
12
p2h2 þ 1

360
p4h4 þ?

� �
ð17Þ

and now, as expected, the computed o2 is an overestimation of p2 of the same accuracy Oðh2Þ:

3. Optimal element mass distribution

Instead of Eq. (13) we propose to write the general finite difference approximation

uj � 2ujþ1 þ ujþ2 þ o2h2ða0uj þ a1ujþ1 þ a0ujþ2Þ ¼ 0 ð18Þ

with the intent of finding the best masses a0 and a1 for highest eigenvalue accuracy.
The characteristic equation of finite differences scheme (18) is

z2 þ 2z
�1þ 1

2
a1o2h2

1þ a0o2h2
þ 1 ¼ 0 ð19Þ

and by the previous arguments we have here that

cos ph ¼
2� a1o2h2

2þ 2a0o2h2
ð20Þ

or

o2 ¼
1

a0h2

1� cos ph

bþ cos ph
; b ¼

a1
2a0

: ð21Þ
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We write b ¼ a1=ð2a0Þ; x ¼ ph; and have by power series expansion that

1� cos x

bþ cos x
¼ x2 1

2ð1þ bÞ
þ

5� b

24ð1þ bÞ2
x2 þ Oðx4Þ

	 

ð22Þ

so that

o2 ¼ p2
1

2a0 þ a1
þ

10a0 � a1
12ð2a0 þ a1Þ

2
x2 þ Oðx4Þ

	 

ð23Þ

which with the choice 2a0 þ a1 ¼ 1; 10a0 � a1 ¼ 0 or, a0 ¼ 1
12
; a1 ¼ 10

12
; results in

o2 ¼ p2 1�
p4h4

240
7?

� �
ð24Þ

with a superior asymptotic accuracy Oðh4Þ:

4. A finite element interpretation

The optimal finite difference scheme

uj þ 2ujþ1 þ ujþ2 þ
o2h2

12
ðuj þ 10ujþ1 þ ujþ2Þ ¼ 0 ð25Þ

can be interpreted as an equation produced by a finite element discretization with the element
mass matrix

me ¼
h

12

5 1

1 5

" #
ð26Þ

which is but a special case of

meðgÞ ¼
h

6

2 1

1 2

" #
þ g

1 �1

�1 1

" # !
ð27Þ

with g ¼ 1
2
: Otherwise the element mass matrix in Eq. (27) is such that meðg ¼ 0Þ is the consistent

element mass matrix and meðg ¼ 1Þ is the lumped.

5. Three-nodes string element

A similar theoretical analysis for the quadratic string element is cumbersome and we revert to a
numerical argument.
The element matrices for a three-nodes quadratic element of size 2h are

ke ¼
1

6h

7 �8 1

�8 16 �8

1 �8 7

2
64

3
75; me ¼

h

15

4 2 �1

2 16 2

�1 2 4

2
64

3
75; me ¼

h

3

1

4

1

2
64

3
75 ð28Þ
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with the lumped me producing the correct kinetic energy for *u ¼ 1 and *u ¼ x; but not for *u2 ¼ x2;
as the consistent me does. We write the general me; true for a linear *u; as

meðgÞ ¼
h

15

4 2 �1

2 16 2

�1 2 4

2
64

3
75þ g

1 �2 1

�2 4 �2

1 �2 1

2
64

3
75

0
B@

1
CA ð29Þ

so that meðg ¼ 0Þ is the consistent element mass matrix and meðg ¼ 1Þ is the lumped element mass
matrix. Does a value of g exist for which convergence of the fundamental eigenvalue l is
superfast? Computations confirm, as shows in Fig. 1, that g ¼ 2

3
leads to eigenvalue convergence at

rate 6 as opposed to convergence at rate 4 for both g ¼ 0 and 1.

6. Three-nodes triangular membrane element

We shall now look at the discretization of boundary value problem

uxx þ uyy þ lu ¼ 0 in domain D with u ¼ 0 on boundary S ð30Þ

which is variationally equivalent to

l ¼ min
*u

R R
ð *u2x þ *u2

yÞ dx dyR R
*u2 dx dy

; ð31Þ

where the double integration extends over D; for *u being at least continuous over the
membrane and with *u ¼ 0 on the boundary where u ¼ 0 prevails. We define the element
stiffness and mass matrices of a triangular membrane element D as holding the coefficients
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Fig. 1. Convergence of fundamental eigenvalue l1 of a unit string and the element mass matrix in Eq. (29).
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in the quadratic formsZ
D

Z
ð *u2x þ *u2yÞ dx dy ¼ uTe keue;

Z
D

Z
*u2 dx dy ¼ uTe meue: ð32Þ

For a linear *u we obtain from Eq. (32) the element stiffness matrix

ke ¼
1

8A
L2
1

2 �1 �1

�1 0 1

�1 1 0

2
64

3
75þ L2

2

0 �1 1

�1 2 �1

1 �1 0

2
64

3
75þ L2

3

0 1 �1

1 0 �1

�1 �1 2

2
64

3
75

0
B@

1
CA ð33Þ

in which L1;L2;L3 are the sides of the triangle and A its area. As for the mass matrices of the
triangular three-nodes membrane element we obtain, from Eq. (32),

me ¼
A

12

2 1 1

1 2 1

1 1 2

2
64

3
75 and me ¼

A

12

4

4

4

2
64

3
75 ð34Þ

that we combine into

meðgÞ ¼
A

12

2 1 1

1 2 1

1 1 2

2
64

3
75þ g

2 �1 �1

�1 2 �1

�1 �1 2

2
64

3
75

0
B@

1
CA ð35Þ

so that meðg ¼ 0Þ is the consistent element mass and meðg ¼ 1Þ is the lumped.
We use this element to discretize an equilateral triangular membrane of unit sides that is known

[2] to have a fundamental eigenvalue of l ¼ 16p2=3: Fig. 2 shows the convergence of l as the

number of elements per side Nes is increased. Computation is shown for g ¼ 0; g ¼ 1; and g ¼ 1
2
;

and indeed convergence is of OðN�2
es Þ for both g ¼ 0 and g ¼ 1; but jumps to OðN�4

es Þ with g ¼ 1
2
:
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7. Four-nodes square membrane element

The next element we consider is a four-nodes square of side h; with node 4 being opposite node
1, and node 3 being opposite node 2. Its element stiffness and mass matrices are

ke ¼
1

6

4 �1 �1 �2

�1 4 �2 �1

�1 �2 4 �1

�2 �1 �1 4

2
6664

3
7775;

meðgÞ ¼
h2

36

4 2 2 1

2 4 1 2

2 1 4 2

1 2 2 4

2
6664

3
7775þ g

5 �2 �2 �1

�2 5 �1 �2

�2 �1 5 �2

�1 �2 �2 5

2
6664

3
7775

0
BBB@

1
CCCA ð36Þ

with meðg ¼ 0Þ being the consistent element mass matrix and meðg ¼ 1Þ being the element lumped
mass matrix. We use this element to discretize a unit square membrane for which l1 ¼ 2p2:
Fig. 3 shows the error in the computed first eigenvalue of the square membrane versus the

number of elements per side Nes on a logarithmic scale. Indeed, for g ¼ 0 and 1, the error in l is
OðN�2

es Þ; whereas for g ¼ 1
4
; the accuracy dramatically improves to OðN�4

es Þ:

8. Conclusions

It has been shown that the finite element mass matrix may be written as a linear function of
parameter g; me ¼ m1 þ gm2 so that meðg ¼ 0Þ is the consistent element mass matrix and meðg ¼ 1Þ
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is the lumped element mass matrix. Convergence to the fundamental eigenvalue l is from above if
g ¼ 0 and is from below if g ¼ 1: An intermediate value of l produces an element mass matrix
with which superaccurate eigenvalues are computed. This is demonstrated for the two- and three-
nodes string element, for the three-nodes triangular membrane element, and for the four-nodes
rectangular membrane element.
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